ORGANIC CHEMISTRY CHEM-3020
SPRING 2013

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Dr. Chad C. Stessman</th>
<th>E-mail</th>
<th>cstessman@chem.csustan.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>664-6667, 667-3468 Chem. Office</td>
<td>Office Hours</td>
<td>MTWF 11:00-11:50</td>
</tr>
<tr>
<td>Office</td>
<td>N 364</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required Text:

WileyPLUS for Organic Chemistry, 1st Edition. Learn more at WileyPLUS.com
Here is the course link http://edugen.wileyplus.com/edugen/class/cls292328/

Suggested Materials:

978-1-1181-1881-8

Content:

- Chapters 9-14, 17-25 and others as time permits

Course Description:

Course Objectives: At the end of this course, students will be able to:

- gain factual knowledge of organic chemistry and apply course materials to improve critical thinking and problem solving.
- demonstrate understanding of organic molecules including structures, properties, reactions and bonding.
- draw and name organic compounds including stereochemistry.
- demonstrate understanding of single step reactions, multistep reactions and reaction mechanisms for different functional groups.
- use NMR, IR and MS spectra to deduce organic structures and vice versa.

Academic Dishonesty: There is zero tolerance for academic dishonesty. Any form of academic dishonesty will result in an F grade for the course, and will be reported to the Office of Student Discipline.

Grading:

- You will take 4 midterm exams and a comprehensive final and homework sets on the WileyPlus site. The exams will be worth 100 points each and the final will be worth 200 points.
- The final will be comprehensive for both semesters of organic chemistry 3010 and 3020.
- Your grade will consist of:

 Four exams @ 100 points each: 400 pts
 Homework sets total: 60 pts.
 Final Exam @ 200 pts. 200 pts

 Class Grand Total 660 pts.

- Grades will be assigned A, B, C, D, F. According to the following percentage scale.
 A 80.0%>B 70.0%>C 55.0>D 40.0%>F
- Plus/minus (+/-) will be used.
Exams:

You will take four one hour exams. Organic chemistry is comprehensive in nature, thus all of the hour exams will focus on material covered since the last exam but may also include material covered previously in the class or in CHEM 3010. The final exam will be comprehensive for both CHEM 3010 and CHEM 3020.

You will take the final exam 12/14 from 11:15-1:15. This will cover all the material that has been covered in CHEM-3010 and CHEM-3020. No make-up’s for the final will be given.

Exam Schedule:

1st Exam Wednesday, February 20th

2nd Exam Friday, March 15th

3rd Exam Friday, April 19th

4th Exam Monday, May 13th

Final Exam, Friday, May 24th, 8:30-10:30AM

WileyPlus online homework sets: You will need to subscribe to WileyPlus for this class. Online assignment will be assigned and graded on the WileyPlus site. The grand total for all of these assignments will be normalized to out of a maximum of 60 points and applied to your final grade.

Here is the course link for WileyPlus http://edugen.wileyplus.com/edugen/class/cls292328/
Important Dates: exam dates and holidays.

<table>
<thead>
<tr>
<th>Class Day</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 20th</td>
<td>Exam #1</td>
</tr>
<tr>
<td>Feb 22nd</td>
<td>Census Date-Last day to drop class</td>
</tr>
<tr>
<td>March 15th</td>
<td>Exam #2</td>
</tr>
<tr>
<td>April 1st-5th</td>
<td>No Class (Spring Break)</td>
</tr>
<tr>
<td>April 19th</td>
<td>Exam #3</td>
</tr>
<tr>
<td>May 13th</td>
<td>Exam #4</td>
</tr>
<tr>
<td>May 24th</td>
<td>Final Exam 8:30-10:30 AM</td>
</tr>
</tbody>
</table>

Please check the course web site regularly for last minute changes to scheduling, assignments, etc. This syllabus is not a contract and could be changed at any time.

Attendance in class is expected; you are responsible for all announcements, corrections and material discussed. I will place a list of suggested problems from the back of the chapter on the board the day we start each new chapter. These problems will not be collected or graded.

Check the class website regularly. I will be posting messages, lecture notes, sample exam questions on the site regularly.

To help you be successful in this course, I have decided to record the audio and video of my lectures so that you can review them via streaming video at your convenience. Only students enrolled in this class will be able to see them within the Blackboard component of this course. Please be aware that the microphone might capture students voices in addition to my lecture.

I have put together several suggestions of things you can try to help gain a better understanding of organic chemistry and to get the most out of this course.

Learning organic chemistry is similar to learning a new language. Much like if you wanted to learn to speak another language the best way to learn organic chemistry is to immerse yourself in your new language. With organic chemistry you can do this by reading the text and working problems. It is suggested that you spend at least 2-3 hours outside of class study and preparing/studying for every 1 hour of lecture. Just like learning a new language some memorization is required to learn organic chemistry, however this needs to be balanced with working problems and reading the book. If you memorized the whole French dictionary and did not know how to pronounce the words or what the sentence structure was you would not be able to go to Paris and speak fluently. The same is true for organic chemistry you will need to balance working flash cards and memorization with working through mechanisms and concepts.
Another unique feature of organic chemistry is its graphic/artistic component. You will learn to draw molecules and will need to know what they look like in three-dimensional space. The best way to do this is to use your molecular model kit and build molecules. A good organic chemist can tell a lot about how a molecule is going to act by drawing it. As you work through problems draw out the molecules and try to understand how they will interact with other molecules and why.

Before lecture read through the assigned chapter in the study guide and at least do a cursory reading of the appropriate sections in the chapter. When you read through the chapters write yourself notes, and copy key concepts, mechanisms etc. into a notebook. Review and preferably rewrite your lecture notes before the next class meeting. Try to work through all of the examples and problems in the text. At a minimum work all of the suggested problems in the back of that book.

When you work problems try to resist the overwhelming urge to look at the solution before you have worked through the problem and are confident with your answer. Working in groups and with tutors can be very helpful, but try to balance this with reading and working problems on your own. Also several short study sessions are better than one long overnight cramming session. Try to keep up on your studying, and keep up with your assignments, if you get behind it can be very difficult to catch up.

If you have a documented disability and wish to discuss academic accommodations, or if you would need assistance in the event of an emergency evacuation, please contact the professor as soon as possible.