ME 218 – Strength of Materials
Course Information
Department of Mechanical Engineering
California State Polytechnic University, Pomona

Instructor: Mariappan “Jawa” Jawaharlal, Ph.D.
Building 17, Room 2359
Email: jmariappan@cpp.edu
Tel. 909-869-4127

Meeting Times: Tuesday/Thursday 01:00 PM – 02:15 PM in Room 9–305
Tuesday/Thursday 02:30 PM – 03:45 PM in Room 9–305

Requisites: C- or better in ME 214

Policy
- Display Professionalism. Professionalism means
 - You come to the class on time before the instructor. Latecomers should stay out of the class.
 - Your cell phones, pagers, hats etc. should be off. Each time your cell phone rings in the class, you will lose a quiz grade.
 - Bring a calculator and work in the class.
 - You don’t start packing up before the end of the class.
 - You don’t ask for homework extension or makeup quiz or exam
 - You don’t whine
- You must use a Cal Poly Pomona email id and check emails regularly.
- You must access this course material on blackboard regularly.
- Late assignments will not be accepted. Please do not ask me for extension
- Sloppy work will not be graded.
- Quizzes are unannounced.
- All exams and quizzes are closed book and closed notes.
- No makeup assignments/quizzes/exams will be given.
- DRC students must schedule their quizzes/exams to be taken at the same time as in class at their location
- Any form of cheating, plagiarism, and/or academic dishonesty will result in an "F" grade.

Assignments
- Homework assignments must be done neatly and stapled. Do NOT use the back of the paper. You must use the following format.
 - Print your name.
 - Write problem number.
 - Given: List the data given in the problem statement; often a sketch with appropriate dimensioning and labeling contains most, if not all of the given information. Missing a given piece of information or a key word will result in your being unable to solve a problem, which you might otherwise have been able to solve.
 - Find: State what you are trying to find in this problem.
 - Solution: Solve the problem in a neat and logical manner.
 - FBD (or space diagrams) must be drawn wherever needed. No FBD, No Credit.
 - Write each general equation before substituting in the appropriate values in a specific equation. This procedure allows you and others to follow what you have done.
 - Box around the final answer or important intermediate results.
 - Give units on the final answer. No units, No Credit.
 - Don’t miniaturize your diagrams. Draw them large enough to show all elements clearly.
Approximate Course Grading:

Homework – 10%
Quizzes – 20%
Midterm exams – 30%
Final exam – 40%

Approximate Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90-100%</td>
</tr>
<tr>
<td>B</td>
<td>80-90%</td>
</tr>
<tr>
<td>C</td>
<td>70-80%</td>
</tr>
<tr>
<td>D</td>
<td>60-70%</td>
</tr>
</tbody>
</table>

Topical Coverage

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Text</th>
</tr>
</thead>
</table>
| 1 | Statics review Statics
 Introduction to Stress
 Normal Stress, Shear Stress, Bearing Stress
 Stresses on an oblique plane
 Stress under general loading conditions
 Factor of Safety | 1.1-1.5 |
| 2 | Introduction to strain
 Stress-strain diagram
 True stress and engineering stress
 Hooke’s law
 Deformation of bodies
 Statically Indeterminate Structures
 Thermal Stress | 2.1-2.3 |
| 3 | Poisson’s ratio
 Generalized Hooke’s Law
 Shearing Strain
 Relation between Young’s modulus, Poisson’s ratio and Modulus of elasticity
 Saint-Venant’s Principle
 Stress Concentrations | 2.4, 2.5, 2.7, 2.8, 2.10, 2.11 |
| 4 | Torsion of Circular Shafts
 Angle of Twist
 Statically Indeterminate shafts
 Transmission shafts | 3.1-3.4 |
| 5 | Pure Bending
 Bending stresses
 Composite Beams | 4.1, 4.2, 4.4 |
| 6 | Eccentric Axial Loading
 General Case of Eccentric Loading
 Shear and Moment Diagrams | 4.7, 4.9, 5.1 |
| 7 | Relationships Between Load, Shear and Moment
 Design of Beams | 5.2, 5.3 |
| 8 | Transverse Shear
 Shearing stress in beams
 The Shear Formula | 6.1, 6.3 |
| 9 | Stresses under combined loads (without Mohr circle)
 Stress Transformation
 Plane Stress | 8.3, 7.1 |
| 10 | Principal Stresses and Maximum Shear Stress, Mohr's Circle | 7.2 |
| 11 | FINAL EXAM |