Chem. 1110 Spring 2015 (10 am)

Instructor: Dr. Scott Russell
Course website: blackboard.csustan.edu
Office: N-365
Phone: 209-664-6870
Email: srussell1@csustan.edu
Lecture Schedule: MWF 10:00 am - 10:50 am in C-102
Office Hours*: Thursday: 10:30 am – 12:30 pm
Friday: 9:00 am – 9:50 am & 11:00 am – 11:50 am in N-365

*Appointments outside of these times may be requested via email.

Supplemental Instruction Sessions:
Mondays & Wednesdays: 9:10am – 9:55am in C-122
Mondays: 11:00am – noon in C-117
Wednesdays: 11:00am – noon in C-114

Catalog Description.
A continuation of CHEM 1100, emphasizing gaseous and ionic equilibria, electrochemical principles, thermodynamics, radio-chemistry, and descriptive chemistry of the elements.
Corequisite: CHEM 1112 (lab) unless already completed with a CR or a grade of C- or higher.
Prerequisite: CHEM 1100 and 1102 with CR or grades of C- or higher. (Lecture, 3 hours; discussion, 1 hour)

Required Materials.
• Scientific calculator
• Scantron 882-E
• iclicker

Grades. The final grades are determined at the end of the course from the class weighted average percent. Final percentages are based on 3 significant figures and borderline scores will be rounded. Letter grades will be assigned as follows A (90% - 100%), B (80% - 90%), C (70% - 80%), D (60% - 70%), F (less than 60%). If CR/NC is selected prior to the census date, a grade of C- or better is required for credit. The instructor may use +/- letter grading if necessary.

The final grade for the course is based on the following categories.

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent of total grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterms</td>
<td>45%</td>
</tr>
<tr>
<td>Cumulative Final Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Online Homework</td>
<td>15%</td>
</tr>
<tr>
<td>Clicker Quizzes</td>
<td>20%</td>
</tr>
</tbody>
</table>

The total grade percentage for the course is calculated as a weighted sum of the categories listed above with the following equation.

Total Grade Percentage = 0.45(% Earned on midterms) + 0.20(% Earned on Cumulative Final)
+ 0.15(\% Earned in Online HW) + 0.20(\% Earned on Clicker Quizzes)
Midterms.
Four midterm exams will be given, which will reflect material covered in lecture, recommended textbook problems, and online homework. The format of the midterm exams will be a combination of multiple choice questions and workout problems.

Makeup Midterms.
Makeup midterm exams will not be given. However, your lowest midterm exam score will be dropped.

Final Exam.
The final exam covers both semesters of General Chemistry (CHEM 1100 and CHEM 1110). The final exam is written by the American Chemical Society (ACS). The cumulative final examination is scheduled for Friday, May 22nd, from 8:30 a.m.-10:30 a.m. in C-102.

Online Homework.
Online homework will be assigned for each chapter covered in lecture. The students must complete the online homework from each chapter by the assigned due dates to receive credit. Students may attempt the questions an unlimited number of times until they get the answers correct. Students will be able to login to the online homework assignments through their blackboard accounts.

Discussion.
Every student is enrolled in a specific discussion session that will meet once a week. This weekly discussion session will provide a small group forum in which you will work on problems associated with the lecture. While attendance is not mandatory, success in the course is strongly correlated with active participation in discussion each week. You should go to discussion each week prepared with questions based on problems you have been actively working on. In discussion you may be guided to work on supplemental worksheets, recommended textbook problems, or online homework problems. The schedule of topics for discussion is available on the blackboard lecture page. This schedule will also include any worksheets that you should print out and bring to discussion. Additionally, the material you work on in discussion will be the focus of a clicker quiz given on the following Monday of each week.

Clicker Quizzes (iclickers)
A clicker quiz will be given each Monday at the beginning of class. The questions will be based on material covered from the previous week in lecture & discussion. Students will respond using iclickers and will receive credit for each submission and credit for each correct answer. Students must purchase their iclicker and register it at “www1.iclicker.com”. It is the responsibility of each student to bring their iclicker to each class. No makeup iclicker quizzes will be given for any reason. However, the lowest clicker quiz score will be dropped.

Supplemental Instructions Sessions.
Supplemental instruction sessions will be available to you. These are sessions run independently by students who have previously earned an A in the course. You are all highly encouraged to
attend these sessions to learn strategies for success in this course. The times and locations of the sessions will be posted on the blackboard course page.

Required Textbook Problems.
Problems found throughout the text, and at the end of each chapter will be posted online. These problems will not be collected or graded, but are required in order to master the material presented in lecture.

Academic Integrity.
Any cheating on examinations, quizzes, or homework is a serious offense. Any instance of cheating justifies a failing course grade. Copying answers and/or using unauthorized notes during quizzes and/or exams are regarded as cheating and will not be tolerated. The instructor reserves the right to remove any person suspected of cheating from the lecture room.

Adding.
It is the responsibility of the student to take the necessary steps to add the class by the university deadlines. The add deadline is **February 4th, 2015**.

Dropping.
It is the responsibility of the student to take the necessary steps to drop the class by the university deadlines. The drop deadline is **February 23rd, 2015**.

CR/NC.
February 23rd, 2015 is the last day to change the grading option to credit/no credit. Any course grade lower than a C- will receive no credit.

Tutoring Center.
The center is located in library building room 112. These services are provided free of charge for any CSU Stanislaus student but are provided on a “first come, first served” basis. It is advisable not to put off getting help when you need additional support for this class.

Disability Resource Services (DRS).
The DRS office is situated in the Mary Stuart Rodgers Building (MSR) room 210. Any requests for special test taking situations must have prior approval from the DRS office. Additional information can be found at www.csustan.edu/DRS

General Education Goals (reprinted from the CSU Stanislaus catalog)

- To provide students with a comprehensive overview of the disciplines' basic principles, methodologies and perspectives.
- To introduce students to the disciplines' subject matter.
- To introduce students to cultural diversity as appropriate to the subject matter.
- To demonstrate to students a discipline's interrelationships with other disciplines.
- To require students to demonstrate clear communication and logical thinking skills.
Learning Objectives.

Chapter 10. Polar covalent bonds, dipole moments, intermolecular forces, liquid properties, phase changes, vapor pressure, boiling point, solid properties and structures (ionic & covalent), unit cells and crystalline solids.

Chapter 11. Solutions, energy changes and the solution process, concentration units, solubility factors, colligative properties, vapor pressure depression: Raoult’s law, boiling point elevation and freezing point depression, osmosis and osmotic pressure.

Chapter 12. Reaction rates, rate laws, reaction order, integrated rate laws, half life, zero, first, and second order reactions, reaction mechanisms, elementary reaction rate laws, overall reaction rate laws, reaction rate dependence on temperature: The Arrhenius equation, catalysis (homogeneous and heterogeneous)

Chapter 13. Chemical equilibrium, equilibrium constants, heterogeneous equilibria, Le Chatelier’s Principle, Shifting equilibria: Pressure, concentration, and temperature, catalysts, Linking equilibrium to chemical kinetics

Chapter 15. Neutralization reactions, the common-ion effect, buffer solutions, Henderson-Hasselbach equation, titration curves, solubility equilibrium, qualitative analysis.

Chapter 16. Thermodynamics, spontaneous processes, enthalpy, entropy, the second law of thermodynamics, free energy, chemical equilibria and free energy.

Chapter 17. Electrochemistry, galvanic cells, shorthand for galvanic cells, cell potentials and free energy, standard reduction potentials, Nernst Equation, batteries, fuel cells, corrosion, electrolysis, quantitative applications.

Chapter 22. Nuclear reactions, radioactivity, rates of radioactive decay, nuclear stability, nuclear energy, fission and fusion, biological effects and applications of nuclear chemistry.
Suggestions for success in this class

- Success in Chem. 1110 depends on you keeping up with the material.
- It is essential that you break the work up into pieces by doing a little each day.
- The material builds on itself and missing the foundation makes building the house very difficult.
- Cramming the material prior to exams only leads to stress and not success.
- By doing a little each day, you will quickly identify areas of difficulty.
- Seek out help as soon as possible, either in office hours or in your discussion section.

Success in Chem. 1110: Divide and Conquer

Read chapters & watch screencast lessons

Attend lectures

Do problems

Come with questions

Office Hours

Discussion & SI Sessions

Success on exams and quizzes
Lecture and Exam Schedule

<table>
<thead>
<tr>
<th>Dates</th>
<th>Chapter</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/28, 1/30, 2/2, 2/4</td>
<td>Chapter 10</td>
<td>Liquids, solids, and phase changes</td>
</tr>
<tr>
<td>2/6, (2/9), 2/11, 2/13, (2/16)</td>
<td>Chapter 11</td>
<td>Solutions and their properties</td>
</tr>
<tr>
<td>2/18</td>
<td>Midterm 1</td>
<td>Covers Chapters 10 & 11</td>
</tr>
<tr>
<td>2/20, (2/23), 2/25, 2/27, (3/2)</td>
<td>Chapter 12</td>
<td>Chemical Kinetics</td>
</tr>
<tr>
<td>3/18</td>
<td>Midterm 2</td>
<td>Covers Chapters 11, 12 & 13</td>
</tr>
<tr>
<td>3/27, (3/30), 4/1, 4/3, 4/13, 4/15, 4/17</td>
<td>Chapter 15</td>
<td>Applications of Aqueous Equilibria</td>
</tr>
<tr>
<td>4/22</td>
<td>Midterm 3</td>
<td>Covers Chapters 13, 14 & 15</td>
</tr>
<tr>
<td>4/29, 5/1, (5/4)</td>
<td>Chapter 17</td>
<td>Electrochemistry</td>
</tr>
<tr>
<td>5/6, 5/8, (5/11), 5/13</td>
<td>Chapter 22</td>
<td>Nuclear Chemistry</td>
</tr>
<tr>
<td>5/15</td>
<td>Midterm 4</td>
<td>Covers Chapters 16, 17 & 22</td>
</tr>
<tr>
<td>5/22 (8:30 – 10:30 am)</td>
<td>ACS Standardized Cumulative Final Exam</td>
<td>Covers Entire Year (Chem. 1100 & 1110)</td>
</tr>
</tbody>
</table>

*All dates are subject to change at the discretion of the instructor.

() Dates shown in parentheses indicated days where a clicker quiz will be given at the beginning of class.